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On the duality of hypervirial and conservation theorems 

W. G. SULLIVAN?- 
Mathematical Institute, Oxford University 
Communicated by C. A. Coulson; MS.  received 2nd October 1967 

Abstract. Hypervirial theorems are treated from the point of view of observables 
and states. This technique yields an extension of the classical results and a new 
proof for the quantum case, and it makes explicit their intimate relationship to con-. 
servation theorems. 

1. Introduction 
Hirschfelder (1960) introduced a family of generalizations of the virial theorem which 

he designated hypervirial theorems. Interest has been mainly in the quantum-mechanical 
case, but classical analogues have also been cited. The  quantum forms are relations which 
are satisfied by eigenfunctions of the Hamiltonian. It has also been shown that functions 
which satisfy a sufficient family of hypervirial relations must be eigenfunctions of the 
Hamiltonian (Hirschfelder 1960, Coulson 1965, Sullivan 1967). 

In  this paper the hypervirial theorems are treated from the statistical point of view of 
observables and states. In  this context the hypervirial theorems are naturally dual to the 
conservation theorems, the former characterizing invariant states and the latter invariant 
observables. Furthermore, the parallel between classical and quantum results is underlined. 
The  Liouville theorem is a hypervirial theorem. Also this treatment leads directly to the 
result that the stationary states are exactly those which satisfy the hypervirial theorems. 

2. Abstract formalism 
A detailed discussion of the observables and states point of view can be found in 

von Neumann (1955). 
We assume the physical system to be described by the set 0 of observables, the set S 

of states, the operation (0, s) giving the expectation value of the observable o in the state s, 
and the dynamical evolution operator T,. I t  is assumed that T,  is parameterized by the 
real line, but other parameterization could be employed. We require the following: 

(i) (,) is bilinear in 0 and 5' when these have linear or convex structures. 
(ii) ?\io two distinct observables take on equal expectation values in every state, and 

no two distinct states give equal expectation values to each observable. 
(iii) T ,  can be regarded as acting either on observables or on states. Its actions are 

automorphisms. For o in 0 we write the action of T ,  as T,*o; for s in S, T,.s. We have 
(T,*o, s) = (0, T,.s) for all 0, s and t. 

Dejinition. An observable o is called invariant if T,*o = o for all t. A state s is called 
invariant if Tt*s = s for all t .  

Now the straightforward application of (ii) and (iii) gives the following theorems. 
Abstract consereation and hypernirial theorems in integrated form. An observable o is 
invariant if, and only if, (0, T p s )  = (0, s) for each state s and all t. A state s is invariant 
if, and only if, (Tt*o, s) = (0, s)  for each observable o and all t. 

3. Classical mechanics 
Configuration space is taken to be Rn with phase space RZn, a point of which being 

indicated by (q,, ..., q n ; p l ,  ...,p,). Time evolution is given by Ti  : RZn + R2,, which is 
related to the Hamiltonian H(q,, ..., qn;  p,, ...,p,; t )  by the system of differential equations 

Next we define invariance. 
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subject to the initial condition that To is the identity operator. Further, we assume that 
T t  : RZn + RZn is invertible for each t and that both T t  and Tt- l  are C" jointly in t and 
phase-space variables. 

Kow, we take for observables the set 33 of all C" functions on RZn with compact 
supports, as described by Schwartz (1950). For the observablefin i3 we define the action 
of T t  by 

For each fixed t ,  Tt*f is in 9. Considered as a function of both t and phase-space variables, 
T,*f is jointly C". 

For states the set 9') the topological vector space dual of 9, is employed. (,) is 
composition of functions with linear functionals. It is usual for physical reasons to restrict 
the set of states to probability measures, but it is convenient mathematically to have the 
additional resources of 53'. The action of T ,  on Bf is defined to be the adjoint of Tt*, 
so that (iii) will be satisfied: 

TtWf(41, a . ' ,  qn;P1,  . a .  > P d  = f(T,(q1, ' a . )  qn;p1,  ... , P a > > .  

(f, T,*m) = <Tt*f, m ) ,  

to the probability measure denoted by m, i.e. 

f E 9 ,  m E 9 ' .  

Let us consider the case that m in 8' can be represented by integration with respect 

I n  this case the action of T ,  on m is usually defined to be 

T,,m(B) = m{T,- l (B)}  

for the Bore1 set B. By a well-known result of measure theory (see Halmos 1950) 

J f d(mT,- l )  = J foT, dm 

which implies that our definition agrees with the usual one. This transfer of the action 
of T ,  from states to observables is the difficult step in the treatment of hypervirial theorems. 
The  rest is just an application of the abstract theorem using the differentiability assumed 
for Tt.  

It is convenient to express the time derivative of T,* in terms of the Poisson bracket 
(see Landau and Lifshitz 1960) 

For f in 9 and m in 9') (Tt* f, m> is a C" function of t ,  and Schwartz (1950) shows that 
differentiation within (,) is valid. Thus 

d 
dt - <Tt*f:f, m> = ( { H , f ) ,  m>. 

Classical conservation and hypervirial theorems for  C" time development. An observable f 
in 9 is invariant if, and only if, ( {H,  f}, m )  = 0 for all m in 9' and all t. A state m in 
9' is invariant if, and only if, ((H,f), m )  = 0 for all f in 9 and all t .  
Proof. (T," f, m> is a C" function of t and hence is constant if, and only if, its time 

erivative is zero. 
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The  Liouville theorem that Lebesgue measure in phase space is invariant is an easy 
corollary of the above result. Integration by parts yields that the Lebesgue integral of 
(H,f} is identically zero for all f in 9. 

T o  obtain the standard classical mechanical virial theorem we use d and 6' for 
observables and states instead of 9 and 9'. 8 is the space of C" functions with unrestricted 
supports and 6' its topological vector space dual defined by Schwartz (1950). It is assumed 
that H = T(p)+ V(q) ,  with T a homogeneous quadratic and V a homogeneous function 
of degree k. Then Xpiqi is in 6 and 

by Euler's theorem on homogeneous functions. Thus for any invariant state m in b' 

2 ( T , m )  = k ( V , m ) .  

I n  particular, the time average over a bounded orbit in phase space is an invariant ele- 
ment of d', which is the particular case given by Landau and Lifshitz (1960). The  
existence and invariance of such time averages in the probability measure case are 
problems of ergodic theory, but the results used here are elementary applications of 
distribution theory. 

4. Quantum mechanics 
The underlying structure of our quantum system is assumed to be a complex Hilbert 

space. The  Hamiltonian H is assumed to be a bounded self-adjoint operator. The  time 
evolution Tt of a vector 4 in the space is given by Tt4 = The set 0 of observables 
is taken to be the set of all bounded linear operators. The  set S of states is taken to be 
the set of all trace-class operators. For physical reasons the states are often restricted to 
positive operators of unit trace, but this restriction is not enforced here. (,) is given by 

( A ,  P) = tr(AP) for A E 0, P E S .  
The actions of T ,  are 

> T,,p = e-iHtpeiHt, T,*A = eiHtA e-iHt 

The time derivative of the actions of T ,  can conveniently be expressed in teims of the 
commutator bracket : 

We have 
[ H ,  A ]  = H A  - AH.  

Quantum conservation and hypervirial theorems for bounded Hamiltonian. An observable 
A is invariant if, and only if, tr(A[P, HI)  = 0 for all states P. A state P is invariant if, and 
only if, tr([H, A]P)  = 0 for all observables A. 
Proof. The proof is by differentiation of tr(( T,*A)P) with respect to t. Analytic justification 
for formal differentiation is found by Schatten (1960). 

Let 0 be an eigenvector of H .  The original form of the hypervirial theorems is that 
the matrix element ( [ H ,  Ale, e )  is zero for each observable A.  Let P be the projector of 
the subspace spanned by the normalized vector 4. Then 

Kff, AI$, $) = t'([H, A l p )  = tr(A[P, HI) 

which shows the relation to the theorem presented above. The  so-called off-diagonal 
hypervirial theorems (Coulson 1965, Chen 1964) are not immediate consequences of the 
above theorem, but a simple modification of the techniques used above can cover this case. 
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